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Abstract — In this paper, we give exponential inequalities for 

the sequence of WOD random variables. 
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I. INTRODUCTION 

Since Wang [2] introduced the concept of WOD random 

variable, many scholars have shown great interest in it and 

achieved many meaningful results.See,for example, Shen [3] 

established the Bernstein type inequality for WOD random 

variables and gave some applications, Wang and Cheng [4] 

presented some basic renewal theorems for a random walk 

with widely dependent increments and gave some 

applications. He [5] provided the asymptotic lower bounds of 

precise large deviations with nonnegative and dependent 

random variables.  

 

II. DEFINITION OF A WOD SEQUENCE 
 

Definition 1[1] For the random variables  1, nX n , if 

there exists a finite real sequence   1, nngU satisfying 

for each 1n  and for all   ,ix , ni 1  
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then we say that the  1, nX n  are widely upper orthant 

dependent (WUOD, in short); if there exists a finite real 

sequence   1, nngL satisfying for each 1n and for all 
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then we say that the  1, nX n  are widely lower orthant 

dependent (WLOD, in short); if they are both WUOD and 

WLOD, then we say that the  1, nX n  are widely 
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orthant dependent (WOD, in short), )(ngU , )(ngL
, 1n  

are called dominating coefficients. 
Lemma  1[1]  Let  1, nX n  be a sequence of WOD 

random variables 

(1) If   1,  nfn  are all nondecreasing(or all 

nonincreasing), then   1, nXf nn  are still WOD; 

(2) For each 1n  and any Rs , 
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where    },max{ ngngg LUn  . 

Let  1, nX n  be a sequence of random variables 

and  1, ncn  be a sequence of positive number. Define 

ni 1 , 1n , 
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It is easy to check that 
ininini XXXX  ,,3,,2,,1
 

for ni 1 , 1n  and ,,1,1 nX nnn XX ,,1,2,1 ,,  are  

bounded by nc  for each fixed 1n . If  1, nX n  are 

WOD random variables, then },1{ ,,1 niX ni  , 

},1{ ,,2 niX ni  , },1{ ,,3 niX ni   are also WOD 

random variables for each fixed 1n  by Lemma 1. 

Lemma 2[1]  Let 1p  and  1, nX n  be a 

sequence of WOD random variables with p

nXE ||  

for each 1n . Assume further that 0nEX  for each 

1n  when 2p . Then there exist positive constant 

)(1 pC  and )(2 pC  depending only on p  such that  
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III. MAIN RESULTS 

Theorem 1  Let  1, nX n  be a sequence of WOD 

random variables with nEX 0  for each 1n , if there 

exist a sequence of positive numbers  1, ncn  such that 

ii cX   for each 1i , then for any 1,0  nt , 
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Proof. It is easy to check that for all Rx , 

xx exxe 2

2

1
1  . Thus, by ,0iEX and ii cX   

for each ,1i  we have  
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for any 0t , by Lemma 1,we can see that 
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Corollary 1 Let  1, nX n  be a sequence of WOD 

random variables and 1,1,,,1  nniX ni
 be defined by 

(1). Then for any 0t  and 1n , 

 

 




























n

i

i

tc

n

i

nini

EXe
t

ng

EXXtE

n

1

22
2

1

,,1,,1

2
exp

exp

. 

 
Proof.  It is easily seen that 

 1,1,,,1,,1  nniEXX nini
 are still WOD random 

variables with  

nnini cEXX 2,,1,,1   for each 1,1  nni ,by 

Theorem1,we have 
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Theorem 2 Let  1, nX n  be a sequence of WOD 

random variables and  1,1,,,1  nniX ni
 be defined 

by (1). Define 1,
1
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Proof. By Markov’s inequality and Corollary1, we have that 

for 0t  
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since  1,,,1  nX ni
 is a sequence of WOD random 

variables,so 
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Corollary 2  Let  1, nX n  be a sequence of identically 

distributed WOD random variables and 

 1,1,,,1  nniX ni
 be defined by (1). Then for any 

0  such that 
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 Theorem 3 Let  1, nX n  be a sequence of identically 

distributed WOD random variables and 

 1,1,,,  nniX niq
3,2q , be defined by (1). 

Assume that there exists a 0  statisfying  
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Proof.  For 2q , by Markov’s inequality and Lemma2, 

we can see that 
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Therefore, it remains only to estimate nEX ,1,2
2

. Here, we 

will adopt the method in[6,Lemma4].By that,it is easy to find 

that 
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For 3q ,the proof is similar to the case for 2q  and is 

omitted. 

Corollary 3  Let  1, nX n  be a sequence of identically 

distributed WOD random variables with 
|| 1X

Ee
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some 0 .Let  
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|)(|
1

,,

1

,, niq

n

i

niq EXX
n

P

nc
X

e
n

EengpCpC 







22

||

21
12)]()()([

. 

Proof  It is easily seen that  
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results immediately from Theorem3. 

 Theorem 4  Let  1, nX n  be a sequence of 

identically distributed WOD random variables with 
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 for some 0 , and }1,{ ncn be a 

sequence of positive numbers such that 
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